Local Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations
نویسندگان
چکیده
This paper is concerned with developing accurate and efficient nonstandard discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic partial differential equations (PDEs) in the case of one spatial dimension. The primary goal of the paper to develop a general framework for constructing high order local discontinuous Galerkin (LDG) methods for approximating viscosity solutions of these fully nonlinear PDEs which are merely continuous functions by definition. In order to capture discontinuities of the first order derivative ux of the solution u, two independent functions q− and q+ are introduced to approximate one-sided derivatives of u. Similarly, to capture the discontinuities of the second order derivative uxx, four independent functions p−−,p−+,p+−, and p++ are used to approximate one-sided derivatives of q− and q+. The proposed LDG framework, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a given fully nonlinear problem into a mostly linear system of equations where the given nonlinear differential operator must be replaced by a numerical operator which allows multiple value inputs of the first and second order derivatives ux and uxx. An easy to verify set of criteria for constructing “good” numerical operators is also proposed. It consists of consistency and generalized monotonicity. To ensure such a generalized monotonicity property, the crux of the construction is to introduce the numerical moment in the numerical operator, which plays a critical role in the proposed LDG framework. The generalized monotonicity gives the LDG methods the ability to select the viscosity solution among all possible solutions. The proposed framework extends a companion finite difference framework developed by Feng and Lewis (J Comp Appl Math 254:81–98, 2013) and allows for the approximation of fully nonlinear PDEs using high order polynomials and nonuniform meshes. Numerical experiments are also presented to demonstrate the accuracy, efficiency and utility of the proposed LDG methods.
منابع مشابه
Mixed Interior Penalty Discontinuous Galerkin Methods for One-dimensional Fully Nonlinear Second Order Elliptic and Parabolic Equations
This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order...
متن کاملMixed Interior Penalty Discontinuous Galerkin Methods for Fully Nonlinear Second Order Elliptic and Parabolic Equations in High Dimensions
This article is concerned with developing efficient discontinuous Galerkin methods for approximating viscosity (and classical) solutions of fully nonlinear second-order elliptic and parabolic partial differential equations (PDEs) including the Monge–Ampère equation and the Hamilton–Jacobi–Bellman equation. A general framework for constructing interior penalty discontinuous Galerkin (IP-DG) meth...
متن کاملTime Implicit High-Order Discontinuous Galerkin Method with Reduced Evaluation Cost
An efficient and robust time integration procedure for a high-order discontinuous Galerkin method is introduced for solving nonlinear second-order partial differential equations. The time discretization is based on an explicit formulation for the hyperbolic term and an implicit formulation for the parabolic term. The procedure uses an iterative algorithm with reduced evaluation cost. The size o...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملOptimal BV Estimates for a Discontinuous Galerkin Method for Linear Elasticity
Discontinuous Galerkin (DG) finite-element methods for secondand fourth-order elliptic problems were introduced about three decades ago. These methods stem from the hybrid methods developed by Pian and his coworker [25]. At the time of their introduction, DG methods were generally called interior penalty methods, and were considered by Baker [4], Douglas Jr. [14], and Douglas Jr. and Dupont [15...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014